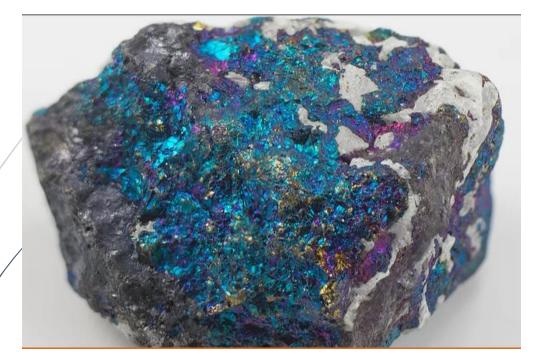
PREDICTIVE MODEL USING MACHINE LEARNING ALGORITHMS



Develop a predictive model using machine learning algorithms (supervised and unsupervised learning) to identify prospective targets for mining exploration.

Problem Statement

The process of Exploratory drilling and probing activities requires high investment, sustained cash inflow, and considerable time with inherent high risk.

Traditional procedures are unable to provide the degree of reliability/confidence limits. The application of mathematical models through data analysis can help improve precision and bring forth decisionmaking criteria at the end of each stage of the exploratory process.

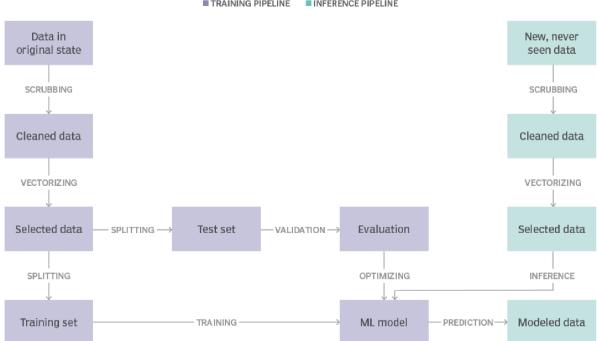
Objectives

To determine the economic viability of probable minerals deposit without the need for drilling and exploratory activities using machine learning algorithms.

Methodology

Process

Based on the desired product output and considering our model performance metric and evaluation, KPIs and a final determination of whether the model can meet the established business goals we



TRAINING PIPELINE INFERENCE PIPELINE

Data Cleaning

Data cleaning is the process of identifying incomplete, incorrect, inaccurate and irrelevant parts of the data and then replacing, modifying or deleting this dirty data. The data received contained about 11 CSV files and a file index explaining the meaning of the names of each file. The total number of **36 predictive variables** needed for the analysis and **1 dependent variable** Each feature is identified in each of the files. This includes Geochemistry (AU, CU, AS, PB, SB, ZN, NA, MG, MO, AG, FE, K, CA), Structural (Azimuth classification (3),w/o structure), Geophysics (Gravimetry & Magnetometry Rpt) and Lithology features (Type of rock (17))

#Importing Libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import normalize

Data Collection

Mineral forecast provided the dataset used for this algorithm

#Importing dataset into Jupyter environment

df = pd.read_csv('mineral_forecast.csv')

df.head()

Out[1]:

Ag_ppm_AA_ICP_Au_ppb_Cu_ppm_AA_ICP ... SAMPTO_Soporte s

0	1.6	NaN	56.0 214.5	1.5 0.0010
1	0.6	NaN	8.0 216.0	1.5 0.0010
2	0.4	NaN	8.0 217.5	1.5 0.0010
3	0.4	NaN	5.0 219.0	1.5 0.0010
4	0.6	NaN	17.0 220.5	1.5 0.0009

[5 rows x 70 columns]

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 178408 entries, 0 to 178407

Data columns (total 70 columns):

Column Non-Null Count Dtype

0	Ag_ppm_A	A_ICP	1489 nor	n-null	float64
1	Au_ppb	834	non-null	float	64
2	Cu_ppm_A	A_ICP	2639 nor	า-null	float64
3	As_ppm_A	A_ICP	1854 nor	า-null	float64
4	Pb_ppm_A	A_ICP	2372 nor	า-null	float64
5	Sb_ppm_A	A_ICP	873 non-	null	float64
6	Zn_ppm_A	A_ICP	2609 nor	า-null	float64
7	Na_pct_ICF	· 11	50 non-nu	ıll flo	at64
8	Mg_pct_IC	P 11	.67 non-n	ull flo	oat64
9	Mo_ppm_4	AA_ICP	2135 no	n-null	float64
10) Ag_ppm_A	AA_ICP.1	1 1489 no	on-null	float64
11	Fe_pct_IC	° 11	85 non-nı	ull flo	at64
12	K_pct_ICP	118	85 non-nu	ll flo	at64
13	Ca_pct_ICI	P 11	.77 non-ni	ull flo	at64
14	X	25425 r	non-null	float64	ļ
15	Ϋ́Υ	25425 r	non-null	float64	Ļ
16	6 Clas_Rumb	o 25	5425 non-	null fl	oat64
17	′ Туре	25425	5 non-null	obje	ct
18	Gravemetr	'y 11	1609 non-	null f	loat64
19	Magnetom	etry RT	P 46409	non-nı	Ill object
20	0 OX	546 no	on-null f	loat64	
21	. OY	546 no	n-null f	loat64	
22	2 OZ	546 no	n-null f	loat64	
23	3X	34685	non-null	float6	4
24	4 3Y	34685	non-null	float6	4
25	5 3Z	34685	non-null	float6	4
26	5 4X	5685 n	on-null	float64	1
27	′ 4Y	5685 n	on-null	float64	Ļ
28	8 4Z	5685 n	on-null	float64	Ļ

----- -----

29	5X	9226 non-null float64
30	5Y	9226 non-null float64
31	5Z	9226 non-null float64
32	6X	178408 non-null int64
33	6Y	178408 non-null int64
34	6Z	178408 non-null float64
35	7X	130 non-null float64
36	7Y	130 non-null float64
37	7Z	130 non-null float64
38	8X	48666 non-null float64
39	8Y	48666 non-null float64
40	8Z	48666 non-null float64
41	10X	13588 non-null float64
42	10Y	13588 non-null float64
43	10Z	13588 non-null float64
44	11X	11307 non-null float64
45	11Y	11307 non-null float64
46	11Z	11307 non-null float64
47	12X	138733 non-null float64
48	12Y	138733 non-null float64
49	12Z	138733 non-null float64
50	13X	106374 non-null float64
51	13Y	106374 non-null float64
52	13Z	106374 non-null float64
53	14X	931 non-null float64
54	14Y	931 non-null float64
55	14Z	931 non-null float64
56	15X	874 non-null float64
57	15Y	874 non-null float64
58	15Z	874 non-null float64

59 16X	16358 non-null float64
60 16Y	16358 non-null float64
61 16Z	16358 non-null float64
62 17X	158 non-null float64
63 17Y	158 non-null float64
64 17Z	158 non-null float64
65 HOLE ID	7405 non-null object
66 SAMPFROM	A 7405 non-null float64
67 SAMPTO	7405 non-null float64
68 Soporte	7405 non-null float64
69 Cut_Pct	7337 non-null float64

df.isnull().sum()

Out[17]:

Ag_ppm_AA_ICP 176919

Au_ppb 177574

Cu_ppm_AA_ICP 175769

As_ppm_AA_ICP 176554

Pb_ppm_AA_ICP 176036

 HOLE ID
 171003

 SAMPFROM
 171003

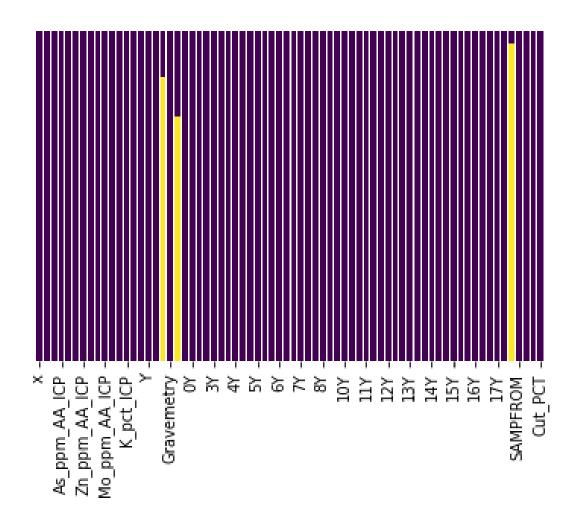
 SAMPTO
 171003

 Soporte
 171003

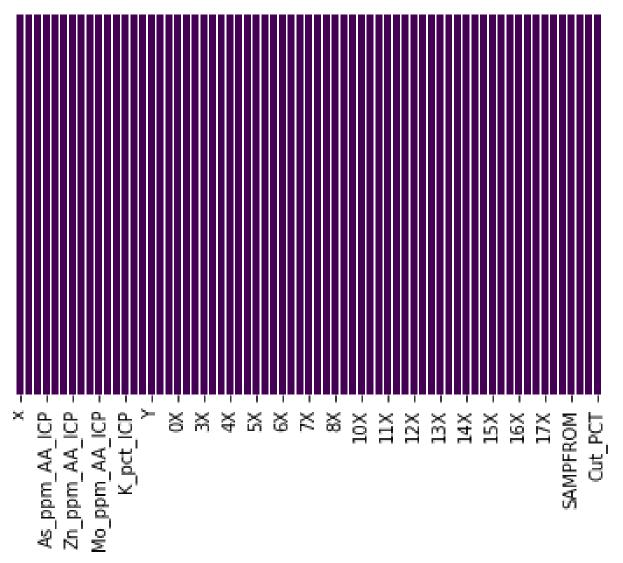
 Cut_Pct
 171071

 Length: 70, dtype: int64

##To replace numeric missing values
df.fillna(df.mean(),inplace=True)
The plot for missing values



Dropping the non-numeric due to much missing



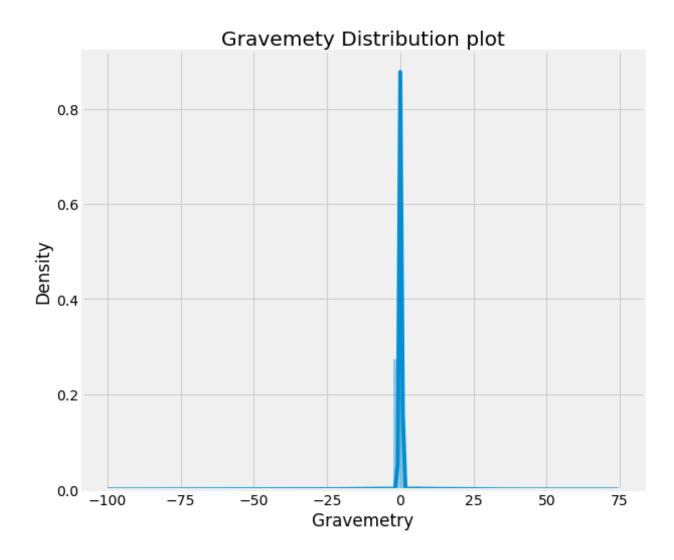
Plotting the distribution of Gravemetry

plt.figure(figsize=(10,8))

plt.style.use('fivethirtyeight')

sns.distplot(df['Gravemetry'])

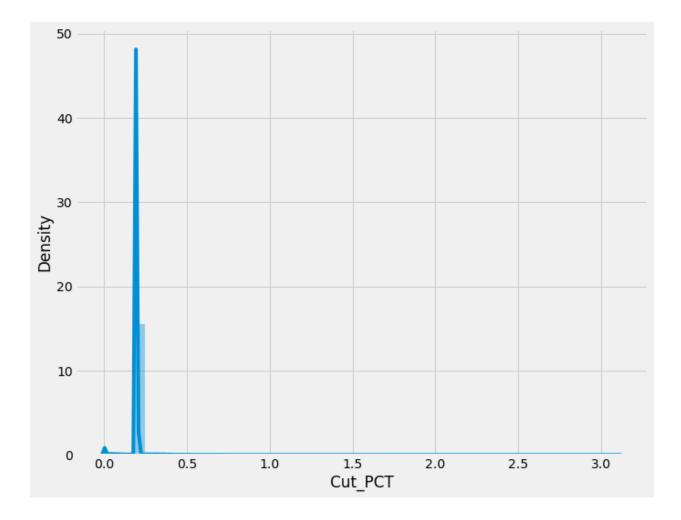
plt.title("Gravemety Distribution plot")



###

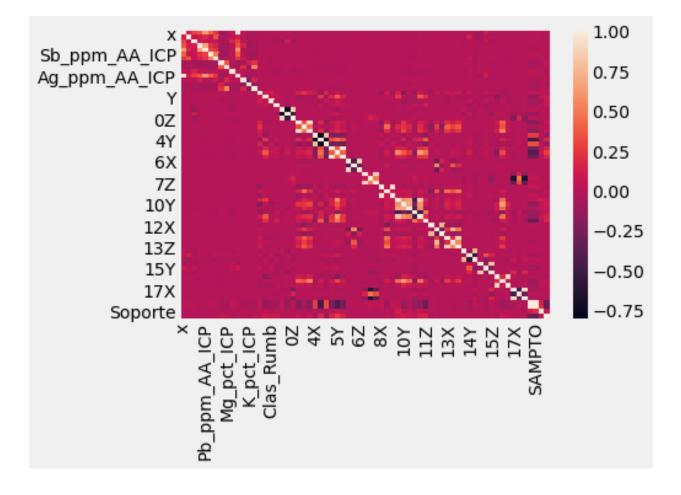
plt.figure(figsize=(10,8))
plt.style.use('fivethirtyeight')
sns.distplot(df['CuT_pct'])

plt.show()

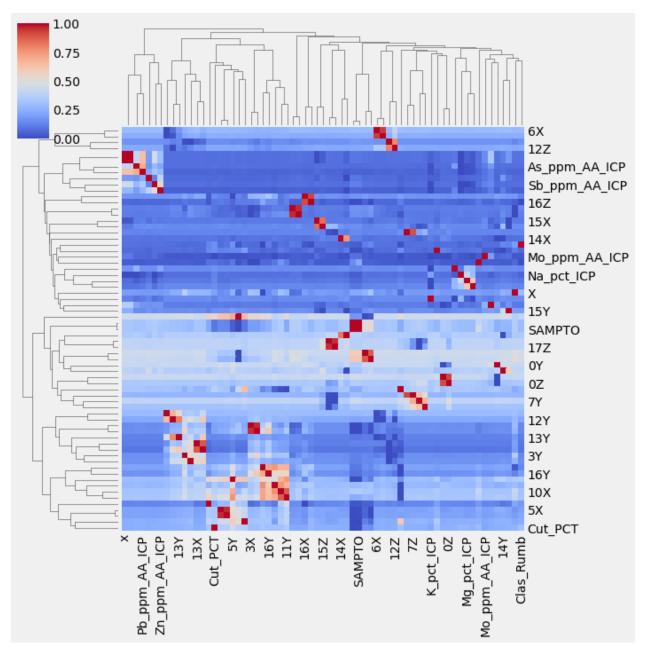


Relationship plot of all variables
Num_corr=df.corr()

sns.heatmap(Num_corr)



Cluster Map



Normalizing the dataset
data_scaled = normalize(df)
data_scaled = pd.DataFrame(data_scaled, columns=df.columns)
data_scaled.head()
Out[45]:

x Au_ppb Cu_ppm_AA_ICP ... SAMPTO Soporte Cut_PCT 0 5.136584e-08 0.000002 1.797805e-06 ... 0.000007 4.815548e-08 3.210365e-11

 1
 1.926214e-08
 0.000002
 2.568285e-07
 ...
 0.000007
 4.815535e-08
 3.210357e-11

 2
 1.284139e-08
 0.000002
 2.568279e-07
 ...
 0.000007
 4.815523e-08
 3.210348e-11

 3
 1.284136e-08
 0.000002
 1.605170e-07
 ...
 0.000007
 4.815511e-08
 3.210341e-11

 4
 1.926200e-08
 0.000002
 5.457567e-07
 ...
 0.000007
 4.815500e-08
 2.889300e-11

Machine Learning Regression

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train, y_train)

##Printing intercept

lm.intercept_

-8.209566446935597e-08

##Printing the coefficient

Coefficent

Ag_ppm_AA_ICP 1.085413e-04

Au_ppb -7.813732e-06

Cu_ppm_AA_ICP 5.482249e-07

As_ppm_AA_ICP 1.092640e-05

Pb_ppm_AA_ICP -2.751776e-06

Sb_ppm_AA_ICP 3.965024e-05

Zn_ppm_AA_ICP 5.110316e-06

Na_pct_ICP 1.422139e-02

Mg_pct_ICP 9.138643e-03

Mo_ppm_AA_ICP -2.318827e-04

X 1.808953e-08

Y 3.377537e-07

Clas_Rumb 2.671339e-04

Gravemetry 6.423099e-04

##Prediction

model_output = pd.DataFrame(prediction,y_test, columns = ['Prediction'])
model_output.head()

Metrics

from sklearn import metrics print('RMSE', np.sqrt(metrics.mean_squared_error(y_test,prediction))) RMSE 1.6144876911655055e-09

R²

metrics.explained_variance_score(y_test,prediction)

0.025012755908466522

Novustack's Mineral Forecast Team Recommendation and Suggestion

Recommendation

The importance of adopting data mining techniques to mining exploration cannot be overemphasized. With the increase in the quality and quantity of exploration data in the last 20 years, there is a need to discover new ways to apply techniques such as data visualization and probabilistic modeling to aid the discovery of economic deposits.

Due to the short time allocated to work on the data, we were able to come up with some results. Although, we believe that there are many more ways the data can be explored to achieve greater proximity to the objective (which is to develop a predictive model using M algorithms that easily identify prospective targets for mining exploration).

Multiple linear regression was the statistical tool of resort as it uses several explanatory variables to predict the outcome of a response variable. It is an extension of linear regression. Although, this method has its limitation in cases of data incompleteness.

Researching for suitable algorithms that could proffer reliable results, the following discoveries were made which could in turn aid the decision-making process on which algorithm is most appropriate.

According to [1], using a dataset with known mineral deposits' locations, exploration characteristics can be selected by applying probabilistic modeling to predict the probability estimates of discovering other possible economic deposits. Although this approach will provide useful results, its shortcomings are a result of the basic assumptions of its weights of evidence. But, a method like randomForest has proven to be effective due to the algorithm's random selection scenarios of both sample and variable, reducing the correlation among the individual decision trees, increasing the diversity of the forest avoiding overfitting. Algorithms like support vector machine (SVM) works best when there is a binary classification (mineral occurrence or non-occurrence) based on careful selection of the data inputs.

Research articles have shown that neural network and kernel methods are most widely used algorithms for data related to mining exploration due to the enormous benefits it offers which include:

The back-propagation procedure of ANN computes the output errors between the predicted value and real target value which is fed back to the ANN, and then ANN tunes the weights and biases in the network to minimize the output error

References

- Barnett, C. T., and Williams, P. M., 2006, Mineral exploration using modern data mining techniques, in Doggett, M. E. and Parry, J. R. (eds.), Wealth Creation in the Minerals Industry: Integrating Science, Business and Education. Society of Economic Geologists, Special Publication 12, pp. 295-310.
- 2. <u>https://www.bwmining.com/casestudies</u>
- 3. <u>https://minervaintelligence.com/economic-geology/</u>
- 4. <u>https://goldspot.ca/</u>